Math 522 Exam 8 Solutions

1. For $f(x)=47 x^{2}+x-2$, find all solutions to $f(x) \equiv 0\left(\bmod 47^{2}\right)$.

BONUS: Find all solutions to $f(x) \equiv 0\left(\bmod 47^{3}\right)$.
We use the lifting theorem, so we first solve $f(x) \equiv 0(\bmod 47)$. Conveniently, $47 x^{2}+x-2 \equiv x-2(\bmod 47)$, so $x=2$ is the unique root modulo 47. Now, $f^{\prime}(x)=94 x+1$, so $f^{\prime}(2)=189 \equiv 1(\bmod 47)$, so this root will lift to a unique root modulo 47^{2}. We solve $f^{\prime}(2) t \equiv-f(2) / 47(\bmod 47)$, which simplifies to $1 t \equiv-\frac{188}{47}=-4 \equiv 43(\bmod 47)$. Hence $x=2+43 \cdot 47=2023$ is the unique root of $f(x)$ modulo $47^{2}=2209$.

BONUS: We start with the sole root $r=2023$, modulo 47^{2}. We have $f^{\prime}(2023)=94 \cdot 2023+1 \equiv 1(\bmod 47)$, so again this root will lift uniquely modulo 47^{3}. We solve $f^{\prime}(2023) t \equiv-f(2023) / 47^{2}(\bmod 47)$, which simplifies to $1 t \equiv-87076 \equiv 15(\bmod 47)$. Hence $x=2023+15 \cdot 47^{2}=35158$ is the unique root of $f(x)$ modulo $47^{3}=103823$.
2. For $n \in \mathbb{N}$, prove that $\phi(n)$ is even if and only if $n>2$.

Suppose that $p^{a} \mid n$ for any odd prime p and $a \in \mathbb{N}$, then (since ϕ is multiplicative) we take a maximal and have $\phi(n)=\phi\left(p^{a}\right) \phi\left(\frac{n}{p^{a}}\right)=\left(p^{a}-p^{a-1}\right) \phi\left(\frac{n}{p^{a}}\right)$. But p^{a} is odd, and so is p^{a-1}, so their difference is even, and so hence is $\phi(n)$. Hence $\phi(n)$ is even for every n that is not a power of 2 (powers of 2 have not yet been addressed). Now $\phi\left(2^{a}\right)=2^{a}-2^{a-1}$. This is even for $a \geq 2$, being the difference of two even numbers. Hence $\phi(n)$ is even for every n except possibly $n=1,2$. But in fact $\phi(1)=\phi(2)=1$, which are odd.
3. High score $=101$, Median score $=77$, Low score $=50$

